

## Arbeitsblätter

Version 1.2



#### LU 1: Luft braucht Raum

Eine Wanne mit Wasser vorbereiten, ein leeres Glas kopfüber eintauchen: Die Luft lässt kein Wasser in das Glas

## LU 2: Luftballon in der Flasche

Mit einem Strohhalm wird in einer geschlossenen Flasche ein Luftballon aufgepustet.

## Warme Luft ist leichter als kalte Luft

## LU 3: Ausdehnung von Luft bei Erwärmung

Material: Leere Glasflasche, Seifenwasser mit viel Spülmittel

<u>Aufgabe: Verschließe die leere Flasche mit einer Seifenblase (Finger eintauchen und herüberwischen).</u>

Erwärme dann die Flasche mit deinen Händen.

Beobachte die Seifenblase. Was beobachtest du?

## Erklärung:

Jetzt fehlt etwas Luft in der Flasche, damit ist der (warme) Inhalt leichter.

Die Dichte ist kleiner aber das Volumen bleibt gleich. Die Masse und das Gewicht in der Flasche sind jetzt kleiner.

- Warme Luft wird größer.
- In die Flasche passt jetzt weniger Luft.
- Der Inhalt ist leichter geworden.

## **Dichte** $\rho$ ("rho")

gemessen in Gramm pro Kubikzentimeter (g/cm<sup>3</sup>) oder Kilogramm pro Liter (kg/L)

#### DI 1: Safttütenversuch

Wenn man eine Safttüte voll Wasser füllt und sie auf eine Waage stellt, so misst man eine Masse von 1000g (Gramm) = 1kg (Kilogramm).

Die Safttüte hat ein Volumen von 1L (Liter).

Material: Salz, Wasser, Mehrere Safttüten mit unterschiedlichen Füllungen.

Auftrag: Wiege die anderen Safttüten. Notiere die Massen in Gramm.

|    | Inhalt | Masse in Kilogramm |  |  |
|----|--------|--------------------|--|--|
| 1. |        |                    |  |  |
| 2. |        |                    |  |  |
| 3. |        |                    |  |  |
| J. |        |                    |  |  |
| 4. |        |                    |  |  |

Füllt man die Safttüte voll mit Brennspiritus, so misst man für den Inhalt nur 769g, also ca 0,77kg. Füllt man die Tüte mit einem Block Eisen, so misst man aber etwa 7200g also 7,2kg.



Also kann die gleich große Safttüte mit ihrem Volumen von 1Liter verschiedene Massen haben. Brennspiritus und Wasser sind also unterschiedlich: Bezogen auf das Volumen 1L ist Brennspiritus leichter, hat weniger Masse. Man sagt, seine Dichte ist kleiner.

Dichte beschreibt also, wie viel Masse (und damit Gewicht) in ein bestimmtes Volumen passt. Dichte ist Masse pro Volumen.

Volumen ist ein anderes Wort für Rauminhalt.

Bei gleichen Volumina sind Flüssigkeiten oder Gase mit kleinerer Dichte also leichter als solche mit größerer Dichte.

## LU 3: Halb mit Luft gefüllte Spritze zuhalten und Kolben nach außen ziehen.

## LU 4: Schnelles Öffnen einer Weithalsflasche mit Saft.

Saft spritzt heraus. Überlege dir, wie man das erklären kann und besprich dies im Unterricht.

## LU 5: Evakuierung einer Einweg-Getränkeflasche aus Kunststoff.

Technische Anwendungen: Pumpen, Laubgebläse, Staubsauger, Trinkhalm

## **Wind und Fahrtwind**

## Fragen:

- Landungen und Starts macht man immer gegen den Wind, warum?
- Der Gegenwindkurs ist beim Segeln mit schnellen Katamaranen oder Surfbrettern anders als mit langsamen Segelbooten. Erkläre.

## Viskoses Schweben als Nutzung der Luftreibung

## LW 1: Baue einen Modellfallschirm mit Papiertaschentuch.

Material: Blatt Papier, Büroklammer, Papiertaschentuch, Nähgarn, Schere, Stoppuhr

## LW 2: Langsames Sinken

Material: Ein Papierblatt, Büroklammer, Stoppuhr

- a) Lass das Blatt Papier mit Büroklammer von der Treppe im Foyer aus fallen und stoppe die Zeit.
- b) Falte es jetzt so, dass es bei gleicher Fallhöhe möglichst lange in der Luft bleibt. Stoppe die Zeiten und notiere sie.
- c) Teste den Papiertaschentuchfallschirm.
- d) Teste die Ahorn- oder Lindensaat. Beschreibe den Unterschied zu den anderen Objekten.



## Luftreibung, Luftwiderstand

LW 4: Luftwiderstand im Strömungskanal Luftwiderstand mit verschiedenen Körpern und unterschiedlichen Strömungsgeschwindigkeiten.

- a) Kugel
- b) Strömungskörper
- c) Fläche quer
- d) Fläche längs
- e) Hohlkugel Rundung vorn
- f) Hohlkugel Öffnung vorn



## Aufbau:

Gebläse, Aluschiene mit Wagen, Halter mit Kraftmesser, Fadensonde

## Durchführung:

Setze die verschiedenen Körper in die Halterung des Wagens. Notiere die Beobachtungen.

## Vergleichswerte verschiedener Körper:

Das habe ich aus diesem Experiment gelernt:

| Körperform                 | Strömungswiderstand |
|----------------------------|---------------------|
| Strömungskörper            | 1                   |
| Zylinder gerundet länglich | 2                   |
| Kugel                      | 8                   |
| Fläche quer                | 20                  |
| Halbkugel, Öffnung vorn    | 24                  |
| Halbkugel, Rundung vorn    | 6                   |



## Stabilisierung und Steuerung beim Fliegen

## Papprakete:

(Hinweis: Diese Rakete ist eigentlich ein Geschoss/Projektil, denn sie hat keinen eigenen Rückstoßantrieb. Sie wird abgeschossen.)

Dieser Versuch dient dazu, dass du erkennst, welche Bedeutung Leitwerke und die Gewichtsverteilung beim Fliegen haben, wann ein Objekt stabil fliegt.



Material: Papphülse, Rundstab, Gummiband, Pappkarte zum Ausschneiden, Schere, Klebe, Klebebandrollen, Stift

**RA 1: Startrampe der Papprakete bauen** (Stab, Kerbe, Gummi, Endstück)

RA 2: Leitwerk an Papprakete anbauen, Spitze beschweren

RA 3: Vergleichende Flugversuche der Papprakete und der Papphülse Flüge im Foyer (Rakete vorwärts und rückwärts im Vergleich)

Das Ziel ist: Die "Rakete" soll möglichst stabil und möglichst weit fliegen. Beschreibe den Unterschied: Papphülse / Rakete vorwärts / Rakete rückwärts.

Die Rakete mit Startrampe kannst du mit nach Hause nehmen!



## Statischer Auftrieb

## SA 2: Aufstieg des Cornelsen-Heißluftballons.

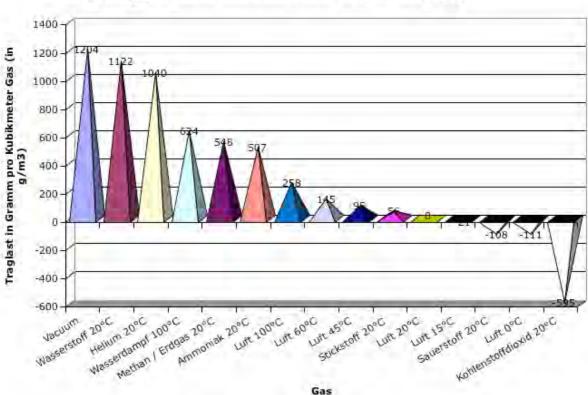
<u>Material:</u> Esbitkocher, Esbit, Feuerzeug, Blechrohr, Plastikballon <u>Sicherheitshinweise:</u> Esbit-Qualm nicht einatmen. Das Rohr wird sehr heiß, auf keinen Fall wieder anfassen oder gegen den Ballon kommen lassen.

<u>Durchführung:</u> Anheizen mit einem Stück Esbit und das Rohr senkrecht auf den Kocher stellen. Warten bis die Flamme fast das Rohrende erreicht, Ballon zu zweit halten.

<u>Temperatur im Ballon:</u> Mit einem elektronischen Thermometer kannst du die Innentemperatur verfolgen.

## SA 10: Start des großen Ballons im Schulgarten

mit Gas-Heizgebläse bzw. Gaz-Brenner


#### Sicherheitshinweise:

- Auf Abstand bleiben bis kein Feuer mehr brennt.
- Verbrennungsgefahr am Lüfter
- Gas muss sicher brennen, sonst Explosionsgefahr des Ballons!
- Erstickungsgefahr und Unfallgefahr unter Ballongewebe bzw. Plastikplane bei Start und Landung
- Gasflasche darf nicht versehentlich erhitzt werden.
- Ballon darf sich nicht entzünden können (Gewebe hat Flammschutz)
- Ballon nie los lassen (Luftfahrt beeinträchtigt), immer mit Seil sichern
- Feuerlöscher im Auge behalten solange Feuer brennt



## Aufgabe: Welches Gas trägt am besten?

Hier siehst du eine Tabelle, die die Tragkraft einer Gasfüllung in Luft bei 20°C Zimmertemperatur zeigt. Die Gase kennst du vielleicht nicht, hast aber einige Namen gehört. Vakuum ist natürlich kein Gas. Je höher die Pyramide, desto besser trägt das Gas.



## Tragfähigkeit verschiedener Gase in Luft bei 20°C

Wenn man diese Zahlen kennt, kann man leicht ausrechnen, ob ein Ballon oder Zeppelin fliegt und wie viel Last er mitnehmen kann. Ein Kubikmeter ist ein Würfel mit einer Kantenlänge von 1m.

Welche Rolle spielt eigentlich das eigene Gewicht des Ballons? Finde heraus, ob folgende Ballons fliegen können:

| Rauminha<br>In Kubikm | •      | Füllung<br>(Gas)  | fliegt?   |
|-----------------------|--------|-------------------|-----------|
|                       |        |                   |           |
| 1                     | 20     | Luft 45°C         | □ja □nein |
| 40                    | 5000   | Luft 60°C         | □ja □nein |
| 100                   | 200000 | Wasserstoff       | □ja □nein |
| 40                    | 5000   | Helium            | □ja □nein |
| 1                     | 20     | Kohlenstoffdioxid | □ja □nein |

#### Denke nach:

Welche Probleme hätte ein Ballon mit Wasserdampf-Füllung? Welche Probleme hätte ein Ballon mit Vakuum als Inhalt?



## Staudruckflieger

Als Modell kannst du es dir bauen: Kurze Flügel mit Begrenzung, großes Höhenruder. Eine genaue Bauanleitung wollen wir in Zukunft unter www.luftfahrtwerkstatt.de anbieten.

Mit dem Zollstockflieger kannst du mit etwas Geschick den Bodeneffekt in Bodennähe beobachten!

Die Unterschiede eines echten Bodeneffektgleiters zum Flugzeug und zum Flugboot und Wasserflugzeug kannst du diskutieren, wenn du die Aerodynamik verstanden hast.







## Nutzung der Windkanäle

## Füssigkeitsmanometer

Das **U-Rohr** wird mit einer Spritze so mit rot gefärbtem Wasser gefüllt, dass es etwa halb voll ist. ohne Luftblasen.

Wenn der Luftdruck auf beide Seiten gleich ist, steht das Wasser in beiden Schenkeln gleich hoch.

Wenn an einer Seite der Druck kleiner ist (Unterdruck), steigt dort der Wasserstand. Bei Überdruck sinkt der Wasserstand. Das ist klar, denn ein größerer Druck drückt das Wasser weg.

- Höherer Druck → tieferer Wasserstand
- Tieferer Druck → höherer Wasserstand

Wenn man nur <u>eine Seite</u> anschließt, dann <u>vergleicht man diesen Druck mit dem</u> Luftdruck im Raum.

Schließt man <u>beide Seiten</u> an unterschiedliche Messstellen an, so sieht man den Druckunterschied zueinander.

Wenn die Änderung im Wasserstand zu klein ist, so kann man das U-Rohr schräg stellen. Jetzt ist die Veränderung besser sichtbar.

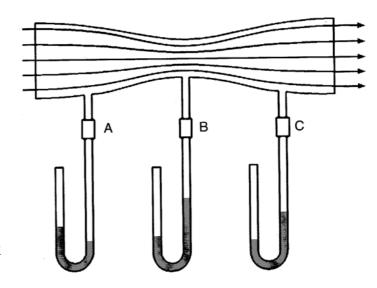
Man kann auch ein neues U-Rohr zusammenbauen, das links ein Vorratsgefäß hat, das uns nicht interessiert und rechts ein sehr schräg liegendes Rohr mit Skala hat. Dieser Aufbau heißt **Schrägrohrmanometer**. Auch hiermit kann man den Druckunterschied zum Luftdruck im Raum oder zu einer anderen Messstelle messen. Das Schrägrohrmanometer ist besser für kleine Druckunterschiede.

Um den Druck direkt ablesen zu können, muss man etwas über die Wassersäule wissen. Das machen wir in höheren Jahrgängen.

Vielleicht ein interessanter Hinweis: Der normale Luftdruck kann Wasser im Manometer etwa 10 Meter hochdrücken, wenn auf der anderen Seite ein Vakuum ist!

#### Luftstrom-Regelung

Die graue Kunststoffklappe am Lüfter kannst du seitlich hochklappen (graue Schraube etwas lösen). Damit kannst du den Luftstrom regeln.




# AE 1: Bernoulli-Effekt 1: Venturirohr

Aufbau: Lüfter, Aluschiene und Venturi-Glasrohr mit Flüssigkeitsmanometern, Gebläse

<u>Auftrag:</u> Beobachte die drei Drücke bei verschiedenen Luftströmungen.

<u>Befund:</u> Je schneller die Luft, desto kleiner der statische Druck ("Saugeffekt").



## "Schnelle Luft zieht an".

## AE 2: Bernoulli-Effekt 2: Gläserne Wasserstrahlpumpe

<u>Auftrag:</u> Untersuche den Aufbau der Wasserstrahlpumpe. Mit ihr kann man durch fließendes Wasser Luft ansaugen. Du kannst das Innere sehen. Mache dir Gedanken zur Funktion.

<u>Lösung:</u> Bernoulli-Effekt wie in Versuch AE 1. An der engen Stelle ist das Wasser sehr schnell. Der Druck ist so klein, dass sogar Luft seitlich angesaugt werden kann (starker Unterdruck, Mitreißen der Luft)

## AE 3: Bernoulli-Effekt 3: Wir pusten Papier

Material: Zwei Stücke Papier

<u>Auftrag:</u> Puste durch zwei Papierblätter, die eine Fingerdicke auseinander gehalten werden.

Effekt:

## Erklärung:

## AE 4: Bernoulli-Effekt 4: Sprühpistole

Material: Sprühflasche, Glasrohr mit Spitze über mit Wasser gefülltem Röhrchen.

Auftrag: Puste durch das Röhrchen.

Erklärung:

<u>LÖSUNG:</u> Die schnelle Luft hat einen geringeren Druck. Das Wasser wird hoch gedrückt, da es oben nicht mehr so stark belastet wird. Es wird dann von der Luft mitgerissen.

Anwendungen: Parfüm-Sprühflaschen, Lackierpistolen

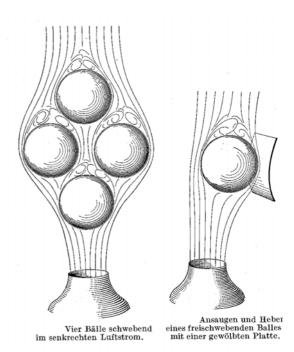
#### AE 5: Bernoulli-Effekt 5: Paradoxon

Ballon pustet durch das Loch in einer Platte. Papier haftet.

Alternativ: 1 Großes Holzbrett mit Kompressor (oder Pressluft aus LKW-Reifen).

Merke: Schnell strömende Luft hat einen kleineren statischen Druck als die Umgebungsluft.

Förderverein NW-Zentrum: www.Luftfahrtwerkstatt.de © 2004, Detlef Kaack, Li Hamburg, Abt. Fortbildung, Beratungsfeld Physik


## AE 6: Bernoulli-Effekt 6: Ball im Luftstrom.

<u>Material:</u> Lüfter, Styroporball, kleiner roter Ball, Blechrohr

<u>Durchführung:</u> Stelle den Lüfter senkrecht, öffne die Klappe ganz. Setze jetzt den Styroporball in den Luftstrom.

<u>Auftrag:</u> Probiere jetzt verschiedene Dinge aus und versuche, ein gemeinsames Erklärungskonzept zu finden.

 Untersuche den Luftstrom mit der Hand, ob er wie eine Säule strömt (innen am stärksten) oder ob die Ränder stärker strömen (wie ein "Topf").



 Styroporball wird kurz über dem Lüfter seitlich in den senkrechten Luftstrom hineingezogen. Warum?

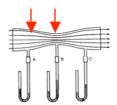
- Ball im schrägen Luftstrom.
- Gewölbtes Blech im vertikalen Luftstrom. Ein gewölbtes Blech wird seitlich an den Luftstrom gehalten.
- Das Blechrohr wird genau über den kleinen roten Ball im Lüftstrom gehalten.

Anregung: Fragen, die zu klären sind: Warum wird der Ball hochgedrückt? Warum pendelt sich die Höhe auf einen bestimmten Wert ein? Warum fällt der Ball seitlich nicht aus dem Luftstrom?



Ansaugen einer gewölbten Fläche durch den Luftstrahl. Untersuchung der Strömung durch Flammensonde.




Eine zwischen zwei Stielen lose gehaltenes Stück Stoff wölbt sich nach dem Luftstrom

## Deine Erklärungen:



## Von Bernoulli zum Thema Fliegen.

<u>Diskussion:</u> Wir wollen den Bernoulli-Effekt zum Fliegen nutzen. Was muss man dazu erreichen? Beispiel Tragfläche.





## Untersuchungen am Flügel (Tragfläche)

Wir messen, in den folgenden Versuchen, ob an einem Flügel Druckunterschiede zu beobachten sind, ob er wirklich nach oben gehoben wird, ob die Luft ihn auch nach hinten drückt und wie er aussehen und eingebaut werden muss, damit ein Flugzeug wirklich fliegen kann. Und das möglichst stabil und sicher.

## AE 10: Druckverteilung am Profil

<u>Aufbau:</u> Tragflächenmodell mit Messöffnungen, frei am Stativ. Schräges Flüssigkeitsmanometer mit Vorratsgefäß und Messsonde, Gebläse, Arbeitsblatt zur Druckerfassung.

## Auftrag:

- a. Stelle verschiedene Anstellwinkel ein und führe mit jedem Winkel folgende Versuche durch. Winkel 0°, 10°, 20°, -10°, -20°.
- b. Miss und notiere die Drücke oben an den Stellen vorn, mittig und hinten (Sonde von unten hineinstecken). Wo ist der Druck am kleinsten?
- c. Miss die Drücke unten an den Stellen vorn, mittig und hinten (Sonde von oben hineinstecken). Wo ist der Druck am größten?
- d. Bei welchem Anstellwinkel gibt es den größten Druckunterschied (Druck unten minus Druck oben)?

| Anstellwinkel   | -20° | -10° | <b>0</b> ° | 10° | <b>20°</b> |  |
|-----------------|------|------|------------|-----|------------|--|
| Druck oben      |      |      |            |     |            |  |
| in Skalenteilen |      |      |            |     |            |  |
| Druck unten     |      |      |            |     |            |  |
| in Skalenteilen |      |      |            |     |            |  |
| Druckdifferenz  |      |      |            |     |            |  |
| in Skalenteilen |      |      |            |     |            |  |



# MO 1: Zusammenbau Gummimotor-Modell "mini light". Siehe Anleitung im Karton.





MO 2: Aufbau des Opitec-Gleiters ... je nach Angebot. Siehe Anleitung.

MO 3: Bau des Styroporgleiters ... je nach Angebot. Siehe Anleitung.





MO 4: Bau des Jalousie-Fliegers ... je nach Angebot. Siehe Anleitung.



## MO 5: Aufbau Freiflugmodell B 747-400







Als erstes müssen die Schlitze für die Flügel frei gemacht werden, vorn und hinten.



Dann werden die Flügel vorsichtig aber deutlich geknickt, damit die aerodynamische Form entsteht: Unten hohl.

Bitte achte darauf, dass dabei keine falschen Knickstellen entstehen.

Beim Knicken müssen die Flügel auch etwas V-förmig nach oben knicken.





Jetzt wird das Plasitkteil so in den Rumpf gesteckt, dass es nach oben gepfeilt ist.



Jetzt steckst du die Flügel hinein (kurze Knickseite vorn) und schiebst das Plastikteil etwas nach vorn.

Jetzt stecke das Höhenleitwerk hinein.

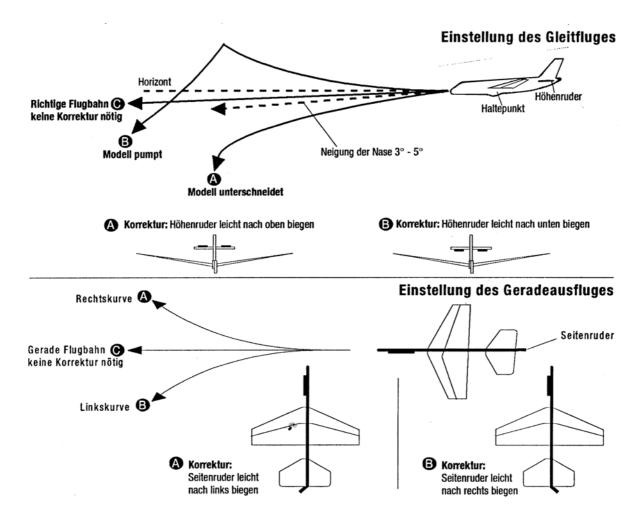


Alle Flügel werden mit den Klebestreifen von unten befestigt. Fertig.



**Trimmung** 




Beim Probefliegen siehst du, ob die Trimmung gut ist.

Durch Einstellung der Höhenruder kannst du die Flugeigenschaften verbessern.

Probiere es aus und merke dir, wie die Veränderungen wirken.

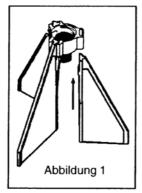


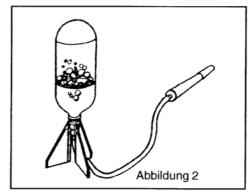
## TE2: Trimmung durch Höhen- und Seitenruder



## SP 1: Flugtests verschiedener Modelle (Sportplatz):

- Hubschrauberspiel,
- Weiße Gleiter.
- · Gleiter mit Gummistart,
- Selbst aufgebaute Modelle,
- Gummimotor-Modelle,
- Eigene Pappraketen,
- Frisbee (Wham-O und Aerobie Disk),
- Aerobie Ring,
- Aerobie Dreieck,
- Bumerang,
- Wasserraketen,
- Wasserraketen mit Getränkeflasche und Fahrradpumpe,
- <u>bei Sonnenschein:</u> Cornelsen Solar-Blimp (schwarzer Beutel)






## Die Wasserraketen mit Getränkeflasche:

<u>Material:</u> Kleine Rakete, Pumpe, Kunststoff-Getränkeflasche, Leitwerke mit Verschraubung, Schlauch, Fahrradpumpe, Wasserkanister

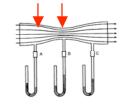




Für die kleine Rakete und die Flaschenrakete gelten:

Der Tank muss halb mit Wasser gefüllt werden, über dem Wasser muss Druckluft sein. Diese bringen wir durch Aufpumpen hinein.

Beim Flug drückt die Druckluft das Wasser hinaus, die Rakete stößt sich vom Wasser ab und wird nach oben gedrückt.




## AE 11: Auftrieb (3er Gruppen)

Aufbau 2 Sätze mit Tragflächenmodell zwischen Plexiglas auf einer Waage, Gebläse

## Auftrag:

a. Finde heraus, wie sich der Auftrieb verändert, wenn der Anstellwinkel verändert wird. Beschreibe die Zusammenhänge.



- b. Finde heraus, wie sich der Auftrieb verändert, wenn der Luftstrom verändert wird. Beschreibe die Zusammenhänge. (Winkel 0° gleich lassen, dann 10°, 20°, 30°)
- c. Untersuche das falsch herum eingespannte Profil. Was ändert sich?

#### Arbeitsblatt

a.

| Anstellwinkel | Auftrieb in cN |
|---------------|----------------|
| -20°          |                |
| -10°          |                |
| -5°           |                |
| 0°            |                |
| 5°            |                |
| 10°           |                |
| 20°           |                |
| 40°           |                |

b. Zusammenhang zwischen Luftströmung und Auftrieb:

c.
Besonderheiten bei kleinen oder großen Anstellwinkeln:



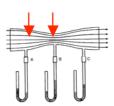
## Anleitung zur Benutzung des Computermessplatzes

## Profil wechseln:

- 1. Gebläse aus
- 2. Arm abstützen
- 3. Profil abziehen (LEGO-Halterung)
- 4. neues Profil anbringen und gerade stellen (LEGO-Halterung)
- 5. Arm-Abstützung lösen
- 6. Gegengewicht vorsichtig auf Gleichgewicht einstellen und fixieren
- 7. Computerprogramm auf Null einstellen ...
- 8. Gebläse an

## Bedienung:

Mit dem Holzrad wird der Anstellwinkel eingestellt. Der Computer misst den Anstellwinkel und zeigt ihn an.


Der Computer misst die Auftriebskraft F<sub>a</sub> und die Luftreibung (den Luftwiderstand) F<sub>w</sub>. Beide werden umgerechnet, angezeigt und grafisch dargestellt.



## **Optimierung Auftrieb / Luftreibung**

AE 13: Welches Flügelprofil hat welche Vorteile?

Aufbau mit auswechselbaren Tragflächenmodellen, frei aufgehängt, an Kraftsensoren. Anzeige per Computer



## Auftrag:

Probiere verschiedene Profiltypen aus. Beschreibe die Effekte:

- Größte Auftriebskraft,
- kleinste Reibungskraft,
- bester Gleitwinkel (siehe Tabelle bzw. Taschenrechner)

Führe folgende Versuche nacheinander mit jedem Profil durch:

a) Notiere Auftrieb und Luftreibung bei verschiedenen Anstellwinkeln. Beschreibe die Zusammenhänge.

| Fw                                                                                                                                                                     |         |                                |                                       |                                                       |                                                                              |                                                                                                |                                                                                                             |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------|---------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
| Fw                                                                                                                                                                     |         |                                |                                       |                                                       |                                                                              | •                                                                                              |                                                                                                             |  |
|                                                                                                                                                                        |         |                                |                                       |                                                       |                                                                              |                                                                                                |                                                                                                             |  |
|                                                                                                                                                                        |         |                                |                                       |                                                       |                                                                              |                                                                                                |                                                                                                             |  |
| b) Stelle einen schwächeren Luftstrom ein und notiere Auftrieb F <sub>a</sub> und Luftwiderstand F <sub>w</sub> bei –10°, 0°, 10° und 20°. Beschreibe die Veränderung. |         |                                |                                       |                                                       |                                                                              |                                                                                                |                                                                                                             |  |
| æl                                                                                                                                                                     | -20°    | -10°                           | -5°                                   | 0°                                                    | 5°                                                                           | 10°                                                                                            | <b>20°</b>                                                                                                  |  |
|                                                                                                                                                                        | Luftwic | Luftwiderstand<br>Veränderung. | Luftwiderstand $F_w$ bei Veränderung. | Luftwiderstand $F_w$ bei $-10^\circ$ , 0 Veränderung. | Luftwiderstand $F_w$ bei $-10^\circ$ , $0^\circ$ , $10^\circ$ u Veränderung. | Luftwiderstand $F_w$ bei $-10^\circ$ , $0^\circ$ , $10^\circ$ und $20^\circ$ . Be Veränderung. | Luftwiderstand $F_w$ bei $-10^\circ$ , $0^\circ$ , $10^\circ$ und $20^\circ$ . Beschreibe d<br>Veränderung. |  |

Auftrieb  $F_a$ Luftreibung  $F_W$ Veränderung zu a:



c) Gib für jedes Profil <u>drei Anstellwinkel</u> an, die du <u>wichtig</u> findest und beschreibe die Vor- und Nachteile einer Tragfläche mit dieser Stellung.

| <u>Profil</u>                | <u>Anstellwinkel</u> | Bemerkung |
|------------------------------|----------------------|-----------|
| Platte                       | 1<br>2               |           |
| Platte, abgerundet           | 2                    |           |
| Gerades Blech                | 2                    |           |
| Gewölbtes Blech              | 2                    |           |
| Symmetrisches Prof<br>(dünn) | 2                    |           |
| Raues Profil                 | 1<br>2               |           |
| Flachprofil                  | 1<br>2               |           |
| Hohlprofil                   | 1                    |           |

## AE14: Optimierung des Anstellwinkels

Aufbau mit auswechselbaren Tragflächenmodellen, frei aufgehängt, an Kraftsensoren. Anzeige per Computer Auftrag:

- a. Zeichne eine grafische Darstellung der Auftriebskraft in Abhängigkeit vom Anstellwinkel auf Millimeterpapier.
- b. Zeichne eine grafische Darstellung der Luftreibungskraft in Abhängigkeit vom Anstellwinkel auf Millimeterpapier.
- Zeichne eine grafische Darstellung der Auftriebskraft in Abhängigkeit von der Reibungskraft auf Millimeterpapier.
   Gib drei Anstellwinkel an, die du wichtig findest und beschreibe die Vor- und Nachteile einer Tragfläche mit dieser Stellung.

|    | Winkel 1:°, Beschreibung:                                                                                                                                                                                                                                                          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Winkel 2:°, Beschreibung:                                                                                                                                                                                                                                                          |
|    | Winkel 3:°, Beschreibung:                                                                                                                                                                                                                                                          |
| d. | Stelle dir vor, ein von dir gebautes Flugzeug fliegt langsamer, als geplant. Würden sich neue Probleme ergeben? Wiederhole dazu alle Versuche dieser Station (ohne Zeichnungen) für einen schwächeren Luftstrom. Findest du wichtige Unterschiede? Was heißt das für ein Flugzeug? |
|    | Unterschiede zum schnellen Luftstrom:                                                                                                                                                                                                                                              |
|    | Probleme für ein langsames Flugzeug:                                                                                                                                                                                                                                               |



## ZO1: Technik/Trimmung: Zollstockflieger

Flugzeug mit variabel anbringbaren Tragflächen (Holzlatte mit Maßstab, Flügel und Höhenleitwerk des "Handyfly" Weichschaummodells)

<u>Auftrag:</u> Finde durch Überlegen und Probieren heraus, wie große Flügel (Tragflächen) und



kleine Flügel (Höhenleitwerk) angeordnet sein können, damit ein Flugzeug stabil fliegt. Es gibt verschiedene Möglichkeiten. Notiere die Position (Rand des Flügels).

- Es soll gleiten, nicht fallen.
- Es soll auch bei unterschiedlicher Geschwindigkeit fliegen.
- Es soll beim Flug seine Fluglage stabilisieren (nicht in einer Kurve nach oben oder unten fliegen, sondern gerade).
- Wird es langsamer, so soll es die Nase (Bug) nach unten nehmen und wieder Fahrt aufnehmen.
  - Wird es zu schnell, so soll es die Nase (Bug) nach oben nehmen und das Modell soll steigen, dabei Fahrt verlieren.
  - Der Wechsel zwischen diesen beiden Veränderungen soll sanft ablaufen, ohne dass das Modell zu stark schaukelt.

## Fall A:

Ist das Höhenleitwerk hinten angeordnet, so soll es nicht tragen sondern beim Flug nach unten drücken, also Abtrieb produzieren! Hierzu muss es einen negativen(!)
Anstellwinkel haben und/oder möglichst ein

aerodynamisches Flügelprofil haben, das auf dem Kopf steht. Bei diesem Tornado kannst du sehen, dass es tatsächlich falsch herum geformt ist.



Die Tragflächen müssen dazu so angebaut werden, dass das Flugzeug leicht nach vorn kippt, wenn die Tragflächenmitte auf den Fingern liegt.

**Grund:** Beim zu langsamen Fliegen reißt die Strömung zuerst am kleineren Höhenleitwerk ab während die Tragflächen noch tragen. In diesem Moment soll das Flugzeug von selbst in den Sinkflug gehen um wieder schneller zu werden. Hier heißt das, dass das Höhenleitwerk hinten nicht mehr nach unten drückt und somit das Heck hoch kippt.

#### Fall B:

Ist das Höhenleitwerk vorn angeordnet (ungewöhnliche Bauweise), so soll es tragen, also Auftrieb produzieren. Hierzu muss es einen positiven Anstellwinkel haben und möglichst ein aerodynamisches Flügelprofil haben, richtig herum angebaut wie bei der Tragfläche.

Die Tragflächen müssen dazu auch so angebaut werden, dass das Flugzeug leicht nach vorn kippt, wenn die Tragflächenmitte auf den Fingern liegt.

Hier heißt dies, dass das Höhenleitwerk vorn nicht mehr trägt und somit die Nase (Bug) nach unten kippt. Das Flugzeug geht in beiden Fällen sanft in den Sinkflug über und wird schneller, bevor die Strömung an den Tragflächen abreißt.



## Arbeitsblatt Zollstockflieger

## 1. Der Aufbau:



Ihr legt das Gummiband wie oben abgebildet um den Zollstock und positioniert die Tragfläche zwischen dem Ende des Zollstocks und dem Gummi.



Dann zieht ihr das Band über die Tragflächen und legt es um den Zollstock. Achtet darauf, dass es relativ stramm sitz, da die Tragflächen sonst schnell verrutschen (evtl. Knoten ins Gummi)

Außerdem solltet ihr darauf achten, dass die Tragflächen sowie das Höhenruder in die richtige Richtung zeigen!!!!!! (Das Höhenruder zeigt mit der geraden Seite nach hinten, die Tragfläche ist nach hinten abgeflacht.)

## 2. Jetzt kann es losgehen:

Verschiebt nun die Tragflächen und das Höhenruder, wie unten angegeben, auf dem Zollstock und notiert die Ergebnisse. Wann fliegt es am Besten???

| Abstand von<br>vorne bis zu<br>den Tragfl | Abstand von<br>hinten bis zum<br>Höhenruder | Flugverhalten |   | alten | Beschreibung, Erklärung<br>(Vermutungen??) |
|-------------------------------------------|---------------------------------------------|---------------|---|-------|--------------------------------------------|
| 2cm                                       | 2cm (63cm)                                  | 0             | 9 | 8     |                                            |
| 2cm                                       | 37cm                                        | 8             | 8 | 3     |                                            |
| 10em                                      | 5em                                         | 0             | 9 | 8     |                                            |
| 33em                                      | 1cm                                         | 0             | 9 | 8     |                                            |
| 40cm                                      | 5cm                                         | 0             | ⊜ | 8     |                                            |
| 32cm                                      | 17cm                                        | 0             | ⊜ | 8     |                                            |



ZO2: Technik/Lenkung: Zollstockflieger Flugzeug mit **drehbarem Seitenruder** (Holzlatte mit Maßstab, Flügel und Höhenleitwerk des "Handyfly" Weichschaummodells, Seitenruder zum Einstecken)

Auftrag: Finde durch Überlegen und Probieren heraus, wie das Seitenruder wirkt.

Beschreibe es hier:



# Die hohe Kunst des Fliegens: Biologie Vogelflug

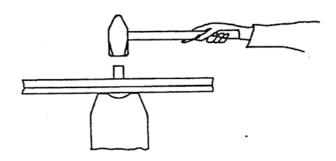
VO1: Vogelmodell

## Auftrag:

Teste das Modell im Foyer und beschreibe das Flugverhalten. Verändere den Anstellwinkel des Schwanzes.

## Vorsicht:

Das Modell ist zerbrechlich. Hinten Anfassen beim Kurbeln, nicht an den Flügeln reißen oder drücken. Nicht zu hart aufziehen, denn dann reißt das Gummi.




## **Technik Flugzeugbau**

# TE 1: Nietübungen zum Flugzeugbau bei Airbus

Die Firma Airbus Deutschland hat uns als Beispiel für eine Arbeit beim Flugzeugbau Originalblech vom Flugzeugrumpf vorgebohrt zur Verfügung gestellt.

Dazu gibt es zwei Sorten von Original Flugzeugnieten.



Typ 1 hat einen Punkt auf dem Kopf und ist aus Aluminium, das immer etwas weich ist und so vernietet werden kann.

Typ 2 hat eine Punktreihe auf dem Kopf und ist eine harte Aluminiumlegierung, die sehr gut hält. Um sie zu nieten, kann man sie weich machen: Bei 480°C 30min lang glühen, dann mit Wasser schockkühlen. Jetzt ist sie weich und kann ca. zwei Stunden verarbeitet werden. Sie bleibt weich, wenn man sie in einer Kühltruhe aufbewahrt. Das tut man in der Flugzeugwerft in Finkenwerder. Die Monteure entnehmen weiche Niete und tragen sie in einem Eimerchen mit Uhr. Diese

# Nietverbindungsarten 1. Einschnittige Nietverbindungen a. Einreihige Überlappverbindung b. Zweireihige Überlappverbindung

überwacht die zwei Stunden zur Verarbeitung. Danach müssen neue Niete genommen werden. Hier sollst du sie im harten Zustand verarbeiten. Geht das?

<u>Durchführung:</u> Spanne die Niethilfe in den Schraubstock ein. Lege zwei Bleche aufeinander und verniete sie mit einem weichen und einem harten Niet. Dazu muss der Nietenkopf unten sein

Man nietet mit <u>vielen kleinen Schlägen</u>, sodass sich ein zweiter Nietenkopf bildet. Mit brutalen Schlägen erreicht man nichts und zerstört den Niet.

<u>Ziel:</u> Die Platten sollen fest zusammenhalten wie Rumpfteile des Flugzeugs. Beim Nieten dürfen sie natürlich nicht verbeult werden!



## PA1: Papierflieger (Abschlussversuch)

Falte zwei verschiedene Papierflieger nach Anleitung und teste sie im Foyer.

Setze alle Erkenntnisse des heutigen Tages ein und erkläre dann die Bedeutung der Faltungen: Trimmung (Gewichtsverteilung), Flügelstellung, Pfeilung, Schwerpunkt, Steuerklappen

# Betrachte und untersuche die Ausstellungsstücke im Innenraum der Schule unter Anleitung:

- Hängegleiter "Superfex"
- Gleitschirm / Paraglider
- Rettungsfallschirm.

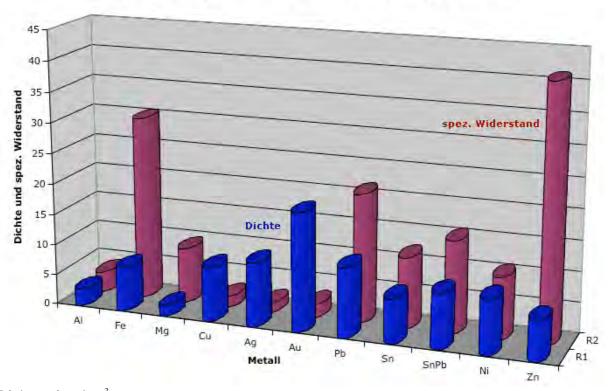
## Sicherheitshinweis zu den Fluggeräten:

Außerhalb der Schule ist das Testen extrem gefährlich und kann tödlich enden: LEBENSGEFAHR! Schon Stürze aus 2 oder 3m Höhe führen u.U. zu schwersten Verletzungen. Es ist verboten, den Hängegleiter, den Fallschirm oder den Gleitschirm aus dem Gebäude zu entfernen.

Der Hängegleiter hat keine Flugzulassung mehr und ein Umgang mit ihm außerhalb des Gebäudes ist für alle Personen unter Strafe verboten. Das gilt auch für Piloten.

## **Flugsimulator**

Der Flugsimulator ermöglicht eine Übung, ein Verkehrsflugzeug zu steuern. Der Versuch einer Landung ist schwierig aber interessant. Du kannst zusehen oder es einmal selbst versuchen. Dieser Simulator soll sogar zur Pilotenausbildung eingesetzt werden ("X-Plane 7").


Programmstart: Doppelklick auf X-Plane



# ATE: Berechnung der Vorteile von Aluminiumkabeln im Flugzeug. (ab Jahrgang 9)

Die Luftfahrtwerkstatt hat einen langen Kabelbaum als Anschauungsobjekt. Wie du sehen kannst, bestehen die Kabel im Inneren aus Aluminium. Sonst kennt man eigentlich nur Kabel, die innen Kupfer haben. Das hat verschiedene Gründe. Unten siehst du eine Tabelle einiger Daten bekannter Metalle. Begründe, warum einerseits Kupfer für elektrische Kabel interessant ist und andererseits im Airbus Aluminiumkabel eingebaut werden.

## Dichte und spezifischer Widerstand einiger Metalle



Dichte  $\rho$  in g/cm<sup>3</sup> spezifische Leitfähigkeit in W\*mm<sup>2</sup>/m Schmelzpunkt  $\vartheta_s$  in °C

| Metall        |      | ρ                 | spez.Wid. | Smp $\vartheta_s$ | Preis ca. |
|---------------|------|-------------------|-----------|-------------------|-----------|
|               |      | g/cm <sup>3</sup> | W·mm²/m   | °C                | \$/lb     |
| Aluminium     | Al   | 2,8               | 0,034     | 650               | 0,80      |
| Eisen         | Fe   | 7,3               | 0,3       | 1230              |           |
| Magnesium     | Mg   | 1,77              | 0,09      | 620               |           |
| Kupfer        | Cu   | 8,94              | 0,017     | 1080              | 1,20      |
| Silber        | Ag   | 10,5              | 0,0159    | 962               |           |
| Gold          | Au   | 19,3              | 0,022     | 1064              |           |
| Blei          | Pb   | 11,34             | 0,21      | 327               |           |
| Zinn          | Sn   | 7,26              | 0,115     | 232               |           |
| Lötzinn 50:50 | SnPb | 8,89              | 0,15      | 215               |           |
| Nickel        | Ni   | 8,89              | 0,10      | 1440              |           |
| Zink          | Zn   | 6,5               | 0,41      | 1855              |           |
|               |      |                   |           |                   |           |



## Arbeitsaufträge (Material: Taschenrechner, Papier)

- 1. Berechne den Widerstand eines Aluminiumkabels mit einem Querschnitt von A=5mm<sup>2</sup> und einem Meter Länge.
- 2. Berechne den Widerstand R eines entsprechenden Kupferkabels.
- 3. Berechne den Querschnitt eines Kupferkabels mit dem gleichen Widerstand R wie das Aluminiumkabel unter 1.
- 4. Vergleiche die Preise und Gewichte (Massen) der Kabel unter 1 und 3. Diskutiere auch Vor- und Nachteile.
- 5. Begründe die Entscheidung, im Flugzeug z.T. Aluminiumkabel zu verwenden.



| ARBEITSBLÄTTER                                                                                      | 1  |
|-----------------------------------------------------------------------------------------------------|----|
| LU 1: Luft braucht Raum                                                                             | 2  |
| LU 2: Luftballon in der Flasche                                                                     | 2  |
| Warme Luft ist leichter als kalte Luft                                                              | 2  |
| LU 3: Ausdehnung von Luft bei Erwärmung                                                             |    |
| Dichte $\rho$ ("rho")                                                                               | 2  |
| gemessen in Gramm pro Kubikzentimeter (g/cm³) oder Kilogramm pro Liter (kg/L)                       | 2  |
| DI 1: Safttütenversuch                                                                              |    |
| LU 3: Halb mit Luft gefüllte Spritze zuhalten und Kolben nach außen ziehen.                         |    |
| LU 4: Schnelles Öffnen einer Weithalsflasche mit Saft                                               |    |
| LU 5: Evakuierung einer Einweg-Getränkeflasche aus Kunststoff                                       |    |
| Wind und FahrtwindVISKOSES SCHWEBEN ALS NUTZUNG DER LUFTREIBUNG                                     |    |
|                                                                                                     |    |
| LW 1: Baue einen Modellfallschirm mit Papiertaschentuch<br>LW 2: Langsames Sinken                   |    |
| Luftreibung, Luftwiderstand                                                                         |    |
| LW 4: Luftwiderstand im Strömungskanal                                                              |    |
| STABILISIERUNG UND STEUERUNG BEIM FLIEGEN                                                           |    |
| RA 1: Startrampe der Papprakete bauen                                                               |    |
| RA 2: Leitwerk an Papprakete anbauen, Spitze beschweren                                             |    |
| RA 3: Vergleichende Flugversuche der Papprakete und der Papphülse                                   |    |
| Flüge im Foyer (Rakete vorwärts und rückwärts im Vergleich)                                         |    |
| STATISCHER AUFTRIEB                                                                                 |    |
| SA 2: Aufstieg des Cornelsen-Heißluftballons                                                        |    |
| SA 10: Start des großen Ballons im Schulgarten                                                      |    |
| Sicherheitshinweise:                                                                                |    |
| Aufgabe: Welches Gas trägt am besten?                                                               | 7  |
| Staudruckflieger                                                                                    | 8  |
| Nutzung der Windkanäle                                                                              |    |
| Füssigkeitsmanometer                                                                                |    |
| Luftstrom-Regelung                                                                                  |    |
| AE 2: Bernoulli-Effekt 1: Venturirohr                                                               |    |
| AE 2: Bernoulli-Effekt 2: Gläserne Wasserstrahlpumpe<br>AE 3: Bernoulli-Effekt 3: Wir pusten Papier |    |
| AE 5: Bernoulli-Effekt 4: Sprühpistole                                                              |    |
| AE 5: Bernoulli-Effekt 5: Paradoxon                                                                 |    |
| AE 6: Bernoulli-Effekt 6: Ball im Luftstrom.                                                        |    |
| Von Bernoulli zum Thema Fliegen.                                                                    |    |
| UNTERSUCHUNGEN AM FLÜGEL (TRAGFLÄCHE)                                                               |    |
| AE 10: Druckverteilung am Profil                                                                    |    |
| MO 1: Zusammenbau Gummimotor-Modell                                                                 |    |
| MO 2: Aufbau des Opitec-Gleiters                                                                    | 13 |
| MO 3: Bau des Styroporgleiters                                                                      |    |
| MO 4: Bau des Jalousie-Fliegers                                                                     |    |
| MO 5: Aufbau Freiflugmodell B 747-400                                                               |    |
| TE2: Trimmung durch Höhen- und Seitenruder                                                          |    |
| SP 1: Flugtests verschiedener Modelle (Sportplatz):                                                 |    |
| Die Wasserraketen mit Getränkeflasche:                                                              |    |
| Beim Flug drückt die Druckluft das Wasser hinaus, die Rakete stößt sich vom Wasser ab und wird nach |    |
| oben gedrückt.                                                                                      |    |
| AE 11: Auftrieb (3er Gruppen)                                                                       |    |
| OPTIMIERUNG AUFTRIEB / LUFTREIBUNG                                                                  |    |
| AE 13: Welches Flügelprofil hat welche Vorteile?                                                    |    |
| AE 13. Weiches Plugeiprojii hai weiche vorteile:  AE14: Optimierung des Anstellwinkels              |    |
| ZO1: Technik/Trimmung: Zollstockflieger                                                             |    |
| Arbeitsblatt Zollstockflieger                                                                       |    |

## Begleitmaterial für einen Praktikumstag für Schulklassen ab Jahrgang 5

| DIE HOHE KUNST DES FLIEGENS: BIOLOGIE                                                    | 24 |
|------------------------------------------------------------------------------------------|----|
| VOGELFLUG                                                                                | 24 |
| VO1: Vogelmodell                                                                         | 24 |
| DAS MODELL IST ZERBRECHLICH. HINTEN ANFASSEN BEIM KURBELN, NICHT AN DEN FLÜGELN REIß     |    |
| DRÜCKEN. NICHT ZU HART AUFZIEHEN, DENN DANN REIßT DAS GUMMI                              | 24 |
| TECHNIK FLUGZEUGBAU                                                                      | 25 |
| TE 1: Nietübungen zum Flugzeugbau bei Airbus                                             | 25 |
| PA1: Papierflieger (Abschlussversuch)                                                    | 26 |
| Betrachte und untersuche die Ausstellungsstücke im Innenraum der Schule unter Anleitung: | 26 |
| Sicherheitshinweis zu den Fluggeräten:                                                   | 26 |
| FLUGSIMULATOR                                                                            | 26 |
| ATF : Rerechnung der Vorteile von Aluminiumkaheln im Flugzeug                            | 27 |